Пояснительная записка

Данная программа по физике для обучающихся 9 классов разработана на основании:

- 1. Федерального закона «Об образовании в Российской Федерации» от 29.12.2012 №273-ФЗ;
- 2. СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организации воспитания и обучения, отдыха и оздоровления детей и молодежи», утвержденными постановлением Главного государственного санитарного врача РФ от 28 сентября 2020 года №28, зарегистрированными в Минюсте России 18 декабря 2020 года, регистрационный номер 61573;
- 3. Федерального Государственного Общеобразовательного Стандарта Основного Общего Образования, утвержденный приказом Министерства образования и науки Российской Федерации от «06» октября 2009 г. №373;
- 4. Федерального перечня учебников, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную деятельность и установления предельного срока использования исключённых учебников, утверждённого приказом Минпросвещения России от 21.09.2020 г №858;
- 5. С учетом требований к оснащению образовательного процесса в соответствии с содержанием наполнения учебных предметов компонента государственного стандарта общего образования.
- 6. Примерной программы основного общего образования по физике Авторской программы Физика.
- 7—9 классы: Рабочая программа к линии УМК И. М. Перышкина, Е. М. Гутник, А. И. Иванова / Е.
- М. Гутник, М. А. Петрова, О. А. Черникова. Москва: Просвещение, 2021
- 7. Авторского тематического планирования учебного материала.
- 8. Учебного плана МБОУ Спиридоновобудской ООШ на 2023-2024 уч. год.

Данный курс предназначен для подготовки к государственной итоговой аттестации учащихся по физике (ОГЭ) в новой форме. Основной задачей итогового контроля является проверка знаний и умений выпускника по данному учебному предмету в соответствии с требованиями образовательного стандарта основного общего образования по физике.

Учащиеся должны показать хорошее освоение знаниями о физических явлениях и законах природы, овладение умениями применять полученные знания на практике за весь курс основной школы (7-9 классы). Все это требует проведения дополнительной работы, по повторению и систематизации ранее изученного материала. Прежде всего, именно эта проблема и должна быть решена в рамках данного курса. Курс опирается на знания, полученные на уроках физики. Основное средство и цель его освоения – решение задач, поэтому теоретическая часть носит обзорный обобщающий характер.

Данный курс рассчитан на 34 часа (1 час/нед.).

Цель курса: обеспечить дополнительную поддержку выпускников основной школы для сдачи ОГЭ по физике.

Задачи курса:

- систематизация и обобщение теоретических знаний по основным темам курса;
- формирование умений решать задачи разной степени сложности.
- усвоение стандартных алгоритмов решения физических задач в типичных ситуациях и в измененных или новых.
- формирование у школьников умений и навыков планировать эксперимент, отбирать приборы, собирать установки для выполнения эксперимента;
- повышение интереса к изучению физики

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ.

Предметные результаты:

Выпускник на базовом уровне научится:

- демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;
- демонстрировать на примерах взаимосвязь между физикой и другими естественными науками;
- устанавливать взаимосвязь естественнонаучных явлений и применять основные физические модели для их описания и объяснения;
- использовать информацию физического содержания при решении учебных, практических, проектных и исследовательских задач, интегрируя информацию из различных источников и критически ее оценивая;
- различать и уметь использовать в учебно-исследовательской деятельности методы научного познания (наблюдение, описание, измерение, эксперимент, выдвижение гипотезы, моделирование и др.) и формы научного познания (факты, законы, теории), демонстрируя на примерах их роль и место в научном познании;
- проводить прямые и косвенные изменения физических величин, выбирая измерительные приборы с учетом необходимой точности измерений, планировать ход измерений, получать значение измеряемой величины и оценивать относительную погрешность по заданным формулам;
- проводить исследования зависимостей между физическими величинами: проводить измерения и определять на основе исследования значение параметров, характеризующих данную зависимость между величинами, и делать вывод с учетом погрешности измерений;
- использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;
- использовать для описания характера протекания физических процессов физические законы с учетом границ их применимости;
- решать качественные задачи (в том числе и межпредметного характера): используя модели, физические величины и законы, выстраивать логически верную цепочку объяснения (доказательства) предложенного в задаче процесса (явления);
- решать расчетные задачи с явно заданной физической моделью: на основе анализа условия задачи выделять физическую модель, находить физические величины и законы, необходимые и достаточные для ее решения, проводить расчеты и проверять полученный результат;
- учитывать границы применения изученных физических моделей при решении физических и межпредметных задач;
- использовать информацию и применять знания о принципах работы и основных характеристиках изученных машин, приборов и других технических устройств для решения практических, учебно-исследовательских и проектных задач;
- использовать знания о физических объектах и процессах в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде, для принятия решений в повседневной жизни.

Выпускник на базовом уровне получит возможность научиться:

- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
 - самостоятельно планировать и проводить физические эксперименты;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, и роль физики в решении этих проблем;

- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины, в контексте межпредметных связей;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

СОДЕРЖАНИЕ ПРОГРАММЫ

Механические явления

Механическое движение. Относительность движения. Траектория. Путь. Перемещение. Равномерное и неравномерное движение. Средняя скорость. Равномерное прямолинейное движение. Зависимость координаты тела от времени в случае равноускоренного прямолинейного движения. Свободное падение. Движение по окружности. Масса. Плотность вещества. Явление инерции. Законы Ньютона. Трение покоя и трение скольжения. Закон Гука. Закон всемирного тяготения. Закон сохранения импульса для замкнутой системы тел. Работа силы. Механическая мощность. Кинетическая и потенциальная энергия. Закон сохранения механической энергии. Момент силы. Давление твердого тела. Давление газа. Атмосферное давление. Гидростатическое давление внутри жидкости. Закон Паскаля. Закон Архимеда. Механические колебания. Амплитуда, период и частота колебаний. Длина волны и скорость распространения волны.

Тепловые явления

Тепловое движение атомов и молекул. Связь температуры вещества со скоростью хаотического движения частиц. Броуновское движение. Диффузия. Взаимодействие молекул. Тепловое равновесие. Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Виды теплопередачи: теплопроводность, конвекция, излучение. Нагревание и охлаждение тел. Количество теплоты. Удельная теплоемкость. Закон сохранения энергии в тепловых процессах. Уравнение теплового баланса. Испарение и конденсация. Изменение внутренней энергии в процессе испарения и конденсации. Кипение жидкости. Удельная теплота парообразования. Влажность воздуха Плавление и кристаллизация. Изменение внутренней энергии при плавлении и кристаллизации. Удельная теплота плавления. Тепловые машины. Преобразование энергии в тепловых машинах. Внутренняя энергия сгорания топлива. Удельная теплота сгорания топлива:

Электромагнитные явления

Взаимодействие электрических зарядов. Закон сохранения электрического заряда. Электрическое поле. Действие электрического поля на электрические заряды. Проводники и диэлектрики. Постоянный электрический ток. Сила тока. Напряжение. Электрическое сопротивление. Удельное электрическое сопротивление. Закон Ома для участка электрической цепи. Последовательное соединение проводников. Смешанные соединения проводников. Работа и мощность электрического тока. Закон Джоуля—Ленца. Опыт Эрстеда. Магнитное поле прямого проводника с током. Линии магнитной индукции. Электромагнит. Магнитное поле постоянного магнита. Взаимодействие постоянных магнитов. Опыт Ампера. Действие магнитного поля на проводник с током. Направление и модуль силы Ампера. Электромагнитная индукция. Опыты Фарадея. Переменный электрический ток. Электромагнитные колебания и волны. Шкала электромагнитных волн. Закон отражения света. Плоское зеркало. Преломление света. Дисперсия света. Линза. Фокусное расстояние линзы. Оптические приборы.

Квантовые явления

Радиоактивность. Опыты Резерфорда. Состав атомного ядра. Ядерные реакции

No	Раздел	Количество часов
1	Тепловые явления	6
2	Электромагнитные явления	8
3	Механические явления	12
4	Квантовые явления	4
5	Текстовые задания	3
6	Итоговое тестирование	1

Календарно-тематическое планирование

№	Тема занятия. Содержание	Кол-во	Дата проведения			
		часов	Планируемая	Фактически		
Тепловые явления						
1.	Строение вещества.					
1.	Тепловое движение атомов и молекул. Броуновское движение. Диффузия.	1	04.09			
	Взаимодействие частиц вещества. Модели					
2.	строения газов, жидкостей и твердых тел. Тепловое равновесие. Температура. Связь температуры со скоростью хаотичного движения частиц.	1	11.09			
3.	Внутренняя энергия. Работа и теплопередача как способы изменения	1	18.09			
4.	внутренней энергии тела. Виды теплопередачи: теплопроводность, конвекция, излучение. Количество теплоты. Удельная теплоемкость.	1	25.09			
5.	Изменение агрегатных состояний вещества. Плавление и кристаллизация. Испарение и	1	02.10			
6.	конденсация. Кипение. Влажность воздуха Закон сохранения энергии в тепловых процессах. Преобразования энергии в тепловых машинах	1	09.10			
	Электромагнитные явл	тения				
7.	Статическое электричество. Электризация тел. Два вида электрических зарядов.	1	16.10			
8.	Взаимодействие зарядов. Закон сохранения электрического заряда. Электрическое поле. Действие электрического поля на электрические заряды.	1	23.10			
9.	Постоянный электрический ток. Сила тока. Напряжение. Электрическое сопротивление. Закон Ома для участка цепи.	1	30.10			
10.	Работа и мощность электрического тока. Закон Джоуля – Ленца.	1	13.11			
11.	Магнетизм. Опыт Эрстеда. Магнитное поле тока. Взаимодействие магнитов. Действие магнитного	1	20.11			
12.	поля на проводник с током. Электромагнитная индукция. Опыты Фарадея. Переменный ток.	1	27.11			
13.	Элементы геометрической оптики. Законы геометрической оптики. Плоское зеркало. Дисперсия света. Линза. Фокусное расстояние	1	04.12			
14.	линзы. Глаз как оптическая система. Оптические приборы.	1	11.12			
	Механические явлен	ия	T T			
15.	Кинематика механического движения. Механическое движение. Путь. Перемещение.	1	18.12			
16.	Скорость. Ускорение. Движение по окружности.	1	25.12			

17.	Инерция. Первый закон Ньютона. Взаимодействие тел. Масса. Сила. Сложение сил.		15.01		
18.			22.01		
19.	Силы в природе.	1	29.01		
20.	Сила упругости. Сила трения. Сила тяжести. Свободное падение. Закон всемирного тяготения		05.02		
21.	Законы сохранения. Импульс тела. Закон сохранения импульса тела. Работа. Мощность. Коэффициент полезного	1	12.02		
22.	действия. Энергия. Закон сохранения механической энергии	1	19.02		
23.	Статика и гидростатика. Простые механизмы. Давление. Атмосферное	1	26.02		
24.	давление. Закон Паскаля. Закон Архимеда.	1	04.03		
25.	Механические колебания и волны. Звук.	1	11.03		
26.	Тестирование по теме «Механические явления»	1	18.03		
	Квантовые явлени	Я			
27.	Квантовая физика. Радиоактивность. Альфа-, бета- и гамма- излучение. Опыты Резерфорда. Планетарная	1	25.03		
28.	модель атома. Состав атомного ядра. Ядерные реакции.	1	01.04		
29.	Физическая картина мира. Физические законы и границы их применимости.	1	08.04		
30.	Роль физики в формировании научной картины мира.	1	15.04		
Текстовые задания					
31.	Работа с текстовыми заданиями.	1	22.04		
32.			29.04		
33.	Работа с текстовыми заданиями.	1 1	06.05		
Итоговое тестирование					
34.	Итоговый тест за курс физики основной школы	1	13.05		
35.	35. Итоговый тест за курс физики основной школы		20.05		

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

- 1. Перышкин А.В. Физика. 7 класс: Учебник для общеобразовательных учреждений М.: Дрофа, 2012.-192 с..
- 2. Перышкин А.В. Физика. 8 класс: Учебник для общеобразовательных учреждений М.: Дрофа, $2012.-192~\mathrm{c.}$.
- 3. Перышкин А.В. Физика. 9 класс: Учеб. для общеобразовательных учреждений / А.В. Перышкин, Е.М. Гутник. М.: Дрофа, 2012. 256 с.
- 4. Н.С. Пурышева, Н.Е. Важеевская, М.Ю Демидова, Е.Е. Камзеева. Государственная итоговая аттестация выпускников 9 классов в новой форме. Физика. 2020. Москва: Интеллект Центр, 2020. 256 с.